Period sets of linear toral endomorphisms on T-2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F15%3AN0000010" target="_blank" >RIV/47813059:19610/15:N0000010 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0166864115000590" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0166864115000590</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2015.02.003" target="_blank" >10.1016/j.topol.2015.02.003</a>
Alternative languages
Result language
angličtina
Original language name
Period sets of linear toral endomorphisms on T-2
Original language description
The period set of a dynamical system is defined as the subset of all integers n such that the system has a periodic orbit of length n. Based on known results on the intersection of period sets of torus maps within a homotopy class, we give a complete classification of the period sets of (not necessarily invertible) toral endomorphisms on the 2-dimensional torus T-2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0007" target="_blank" >EE2.3.30.0007: Development of Research Capacities of the Silesian University in Opava</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
185-186
Issue of the periodical within the volume
May 2015
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
41-49
UT code for WoS article
000351980500004
EID of the result in the Scopus database
2-s2.0-84925536198