Pedal coordinates, dark Kepler, and other force problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000003" target="_blank" >RIV/47813059:19610/17:A0000003 - isvavai.cz</a>
Result on the web
<a href="http://aip.scitation.org/doi/10.1063/1.4984905" target="_blank" >http://aip.scitation.org/doi/10.1063/1.4984905</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4984905" target="_blank" >10.1063/1.4984905</a>
Alternative languages
Result language
angličtina
Original language name
Pedal coordinates, dark Kepler, and other force problems
Original language description
Pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will showthat the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordinates at once without the need of solving any differential equation. This will allow us to generalize Newton theorem of revolving orbits to include nonlocal transforms of curves. Finally, we apply developed methods to solve the "dark Kepler problem," i.e., central force problem where in addition to the central body, gravitational influences of dark matter and dark energy are assumed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
58
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
„063505-1“-„063505-25“
UT code for WoS article
000404632000033
EID of the result in the Scopus database
2-s2.0-85020686062