All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spherical Pedal Coordinates and Calculus of Variations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000153" target="_blank" >RIV/47813059:19610/24:A0000153 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-62407-0_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-62407-0_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-62407-0_16" target="_blank" >10.1007/978-3-031-62407-0_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spherical Pedal Coordinates and Calculus of Variations

  • Original language description

    Planar curves can be described in terms of pedal coordinates. We will introduce a generalization of this notion for curves on a sphere in Euclidean space. It is observed that certain problems in the calculus of variations can be solved with the help of these coordinates [1]. In particular, we show how the notion of spherical pedal coordinates can be used to solve the spherical version of isoperimetric problems and the problem of brachistochrone.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Geometric Methods in Physics XL, Trends in Mathematics

  • ISBN

    9783031624063

  • ISSN

    2297-0215

  • e-ISSN

    2297-024X

  • Number of pages

    13

  • Pages from-to

    209-221

  • Publisher name

    Birkhäuser Cham

  • Place of publication

    Cham, Switzerland

  • Event location

    Białowieża, Poland

  • Event date

    Jul 2, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001308717200016