All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pedal Coordinates and Orbits Inside Magnetic Dipole Field

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000126" target="_blank" >RIV/47813059:19610/23:A0000126 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-30284-8_14" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-30284-8_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-30284-8_14" target="_blank" >10.1007/978-3-031-30284-8_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pedal Coordinates and Orbits Inside Magnetic Dipole Field

  • Original language description

    We will compare two different techniques to solve a problem of motion of a charged particle inside magnetic dipole field. One “classical” and the other using pedal coordinates. We will show that even though the classical approach gives an exact solution in terms of known function, pedal coordinates offer much better understanding of the solution and also offer a mean to manipulate the obtained orbits in order to be able to link them with existing curves and other force problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-27941S" target="_blank" >GA21-27941S: Function theory and related operators on complex domains</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Geometric Methods in Physics XXXIX, Trends in Mathematics

  • ISBN

    9783031302862

  • ISSN

    2297-0215

  • e-ISSN

    2297-024X

  • Number of pages

    12

  • Pages from-to

    147-158

  • Publisher name

    Birkhäuser Cham

  • Place of publication

    Cham, Switzerland

  • Event location

    Białystok, Poland

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article