Generalized Dhombres functional equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000019" target="_blank" >RIV/47813059:19610/17:A0000019 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-61732-9_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-61732-9_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-61732-9_13" target="_blank" >10.1007/978-3-319-61732-9_13</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Dhombres functional equation
Original language description
We consider the equation f(xf(x)) = phi(f(x)), x > 0, where phi is given, and f is an unknown continuous function (0,infinity)->(0,infinity). This equation was for the first time studied in 1975 by Dhombres (with phi(y) = y^2), later it was considered for other particular choices of phi, and since 2001 for arbitrary continuous function phi. The main problem, a classification of possible solutions and a description of the structure of periodic points contained in the range of the solutions (which appeared to be important way of the classification of solutions), was basically solved. This process involved not only methods from one-dimensional dynamics but also some new methods which could be useful in other problems. In this paper we provide a brief survey.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Developments in Functional Equations and Related Topics
ISBN
9783319617312
Number of pages of the result
7
Pages from-to
297-303
Number of pages of the book
352
Publisher name
Springer International Publishing
Place of publication
Cham (Switzerland)
UT code for WoS chapter
—