Typical Behaviour of Random Interval Homeomorphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F21%3AA0000099" target="_blank" >RIV/47813059:19610/21:A0000099 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs12346-021-00509-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs12346-021-00509-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12346-021-00509-2" target="_blank" >10.1007/s12346-021-00509-2</a>
Alternative languages
Result language
angličtina
Original language name
Typical Behaviour of Random Interval Homeomorphisms
Original language description
We consider the typical behaviour of random dynamical systems of order-preserving interval homeomorphisms with a positive Lyapunov exponent condition at the endpoints. Our study removes any requirement for continuous differentiability save the existence of finite derivatives of the homeomorphisms at the endpoints of the interval. We construct a suitable Baire space structure for this class of systems. Generically within this Baire space, we show that the stationary measure is singular with respect to the Lebesgue measure, but has full support on [0, 1]. This provides an answer to a question raised by Alseda and Misiurewicz.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Qualitative Theory of Dynamical Systems
ISSN
1575-5460
e-ISSN
1662-3592
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
„73-1“-„73-20“
UT code for WoS article
000686649500001
EID of the result in the Scopus database
2-s2.0-85112421281