All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient MPC for permanent magnet synchronous motor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F17%3A43932580" target="_blank" >RIV/49777513:23220/17:43932580 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23520/17:43932580

  • Result on the web

    <a href="http://dx.doi.org/10.1109/MED.2017.7984092" target="_blank" >http://dx.doi.org/10.1109/MED.2017.7984092</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MED.2017.7984092" target="_blank" >10.1109/MED.2017.7984092</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient MPC for permanent magnet synchronous motor

  • Original language description

    The permanent magnet synchronous motor (PMSM) control poses a challenging task since the dynamics of the system is nonlinear, there are hard constraints, and computational costs should be kept as low as possible. One way how to satisfy all of the requirements is to use the model predictive control (MPC) with a small length of short horizon in the MPC criterion and then try to replace the remaining long-horizon part with an appropriate approximation. This paper develops the idea of the long-horizon part approximation by the expected time to reach the required state of the PMSM. The reason of using this expected time is properly justified here which simultaneously causes that the number of user-defined parameters is reduced to minimum. Then, the MPC controller for the PMSM utilizing this approximation is designed for continuous region of admissible control actions. The advantages of the designed control algorithm are demonstrated by numerical simulations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptive Approaches to State Estimation of Nonlinear Stochastic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED)

  • ISBN

    978-1-5090-4533-4

  • ISSN

    2325-369X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    36-41

  • Publisher name

    IEEE

  • Place of publication

    Valleta

  • Event location

    Valleta, Malta

  • Event date

    Jul 3, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000426926300007