Neuro-fuzzy approaches to estimating thermal overstress behavior of IGBTs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43962329" target="_blank" >RIV/49777513:23220/21:43962329 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9432584" target="_blank" >https://ieeexplore.ieee.org/document/9432584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PEMC48073.2021.9432584" target="_blank" >10.1109/PEMC48073.2021.9432584</a>
Alternative languages
Result language
angličtina
Original language name
Neuro-fuzzy approaches to estimating thermal overstress behavior of IGBTs
Original language description
The Thermal overstress behavior of power semiconductor components is a determining factor to evaluate the reliability and performance of power electronic devices. Many theoretical and empirical methods have been presented to address the thermal effects of power electronics components on the quality of power systems. However, analyzing temperature brings to us a large number of uncertainties and nonlinearities affecting the accuracy of modeling. This paper proposes three neuro-fuzzy based techniques to estimate the temperature of Insulated Gate Bipolar Transistors (IGBTs). These techniques include grid partitioning clustering, Fuzzy C-Means (FCM) clustering, and subtractive clustering. An experimental dataset containing over 1.5 million data points is used to develop and train the proposed neuro-fuzzy approaches. This dataset is obtained during a comprehensive investigation on IGBTs and thermal effects by scientists at Ames Research Center of NASA. Preliminary results have demonstrated that the applied approaches are superior to estimating the thermal overstress behavior of IGBTs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Electrical Engineering Technologies with High-Level of Embedded Intelligence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC) : /proceedings/
ISBN
978-1-72815-660-6
ISSN
—
e-ISSN
2473-0165
Number of pages
8
Pages from-to
843-850
Publisher name
IEEE
Place of publication
Piscaway
Event location
Gliwice, Poland
Event date
Apr 25, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000723843000120