Symbolic manipulations in geometry and computer graphics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F01%3A00065542" target="_blank" >RIV/49777513:23520/01:00065542 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Symbolic manipulations in geometry and computer graphics
Original language description
In this article there is a short description how Groebner basis theory can be used for symbolic manipulation in geometry and computer graphics. There are especially examples from automatic geometric theorem proving, conversion of parametric representation of affine variety into implicit representation and variational geometry.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Symbolic manipulations in geometry and computer graphics
ISBN
8071575607
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
Jednota českých matematiků a fyziků
Place of publication
Brno
Event location
Brno
Event date
Jan 1, 2001
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—