All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ideals and sequentially compact spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502506" target="_blank" >RIV/49777513:23520/09:00502506 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ideals and sequentially compact spaces

  • Original language description

    A topological space X is said to be an I_{1/n}-space if for every sequence <x_n> in X there exists a converging subsequence <x_{n_k}> such that the set {x_{k_n}: n in N} does not belong to the summable ideal. Every I_{1/n}-space is sequentially compact,but not every sequentially compact space is I_{1/n}-space. Assuming Martin's axiom for sigma-centered posets we construct a van der Waerden space that is not an I_{1/n}-space and an I_{1/n}-space that is not Hindman.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology Proceedings

  • ISSN

    0146-4124

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CA - CANADA

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database