Ideals and sequentially compact spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502506" target="_blank" >RIV/49777513:23520/09:00502506 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Ideals and sequentially compact spaces
Original language description
A topological space X is said to be an I_{1/n}-space if for every sequence <x_n> in X there exists a converging subsequence <x_{n_k}> such that the set {x_{k_n}: n in N} does not belong to the summable ideal. Every I_{1/n}-space is sequentially compact,but not every sequentially compact space is I_{1/n}-space. Assuming Martin's axiom for sigma-centered posets we construct a van der Waerden space that is not an I_{1/n}-space and an I_{1/n}-space that is not Hindman.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology Proceedings
ISSN
0146-4124
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
15
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—