Graphs with odd cycle lengths 5 and 7 are 3-colorable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898667" target="_blank" >RIV/49777513:23520/11:43898667 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/090761860" target="_blank" >http://dx.doi.org/10.1137/090761860</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/090761860" target="_blank" >10.1137/090761860</a>
Alternative languages
Result language
angličtina
Original language name
Graphs with odd cycle lengths 5 and 7 are 3-colorable
Original language description
Let L(G) be the set of lengths of odd cycles in a graph G. It is known that if the size of L(G) is k, then G is 2k+1-colorable unless one of its blocks is the complete graph of size 2k+2. In this paper, we improve this bound for graphs G with L(G)={5,7}by showing that they are 3-colorable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0197" target="_blank" >GA201/09/0197: Graph colorings and flows: structure and applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
1069-1088
UT code for WoS article
—
EID of the result in the Scopus database
—