Circle-preserving Subdivision Scheme Based On Apollonius' Circle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914894" target="_blank" >RIV/49777513:23520/12:43914894 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Circle-preserving Subdivision Scheme Based On Apollonius' Circle
Original language description
In this paper, we introduce a new Hermite subdivision scheme. The main idea of inserting a new point corresponding to an edge and its associated tangent vector is to intersect suitably chosen Apollonius' circle with an axis of the angle between one of the associated tangent vectors and this edge. The scheme is proved to converge to a continuous curve and, moreover, the limit curve is G^1 continuous. One of main the properties is that it is circle-preserving, i.e., if the initial vertices and their associated tangent vectors are sampled from a circle, then the subdivision process converges to this circle.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Aplimat 2012 - Proceedings of the International Conference
ISBN
978-80-89313-58-7
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
407-416
Publisher name
Faculty of Mechanical Engineering, STU Bratislava
Place of publication
Bratislava
Event location
Bratislava
Event date
Feb 7, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—