CIRCLE-PRESERVING SUBDIVISION SCHEME BASED ON APOLLONIUS’ CIRCLE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43918198" target="_blank" >RIV/49777513:23520/12:43918198 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
CIRCLE-PRESERVING SUBDIVISION SCHEME BASED ON APOLLONIUS’ CIRCLE
Original language description
In this paper, we introduce a new Hermite subdivision scheme. The main idea of inserting a new point corresponding to an edge and its associated tangent vector is to intersect suitably chosen Apollonius’ circle with an axis of the angle between one of the associated tangent vectors and this edge. The scheme is proved to converge to a continuous curve and, moreover, the limit curve is G1 continuous. One of main the properties is that it is circle-preserving, i.e., if the initial vertices and their associated tangent vectors are sampled from a circle, then the subdivision process converges to this circle.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aplimat - Journal of Applied Mathematics
ISSN
1337-6365
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
10
Pages from-to
123-132
UT code for WoS article
—
EID of the result in the Scopus database
—