Antimagicness of some families of generalized graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915987" target="_blank" >RIV/49777513:23520/12:43915987 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Antimagicness of some families of generalized graphs
Original language description
An edge labelling of a graph G=(V,E) is a bijection from the set of edges to the set of integers {1,2,...,|E|}. The weight of a vertex v is the sum of the labels of all the edges incident with v. If the vertex weights are all distinct then we say that the labelling is vertex-antimagic. A graph that admits an antimagic labelling is called an antimagic graph. In this paper, we present a new general method of constructing families of graphs with antimagic labelings. In particular, our method allows us to prove that generalized web graphs and generalized flower graphs are antimagic.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Australasian Journal of Combinatorics
ISSN
1034-4942
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
1
Country of publishing house
AU - AUSTRALIA
Number of pages
12
Pages from-to
179-190
UT code for WoS article
—
EID of the result in the Scopus database
—