All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antimagicness of some families of generalized graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915987" target="_blank" >RIV/49777513:23520/12:43915987 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antimagicness of some families of generalized graphs

  • Original language description

    An edge labelling of a graph G=(V,E) is a bijection from the set of edges to the set of integers {1,2,...,|E|}. The weight of a vertex v is the sum of the labels of all the edges incident with v. If the vertex weights are all distinct then we say that the labelling is vertex-antimagic. A graph that admits an antimagic labelling is called an antimagic graph. In this paper, we present a new general method of constructing families of graphs with antimagic labelings. In particular, our method allows us to prove that generalized web graphs and generalized flower graphs are antimagic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Australasian Journal of Combinatorics

  • ISSN

    1034-4942

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    12

  • Pages from-to

    179-190

  • UT code for WoS article

  • EID of the result in the Scopus database