All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Totally antimagic total graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43924760" target="_blank" >RIV/49777513:23520/15:43924760 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Totally antimagic total graphs

  • Original language description

    For a graph G, a bijection from the vertex set and the edge set of G to the set {1,2,...,|V(G)|+|E(G)|} is called a total labeling of G. The edge-weight of an edge is the sum of the label of the edge and the labels of the end vertices of that edge. The vertex-weight of a vertex is the sum of the label of the vertex and the labels of all the edges incident with that vertex. A total labeling is called edge-antimagic total (vertex antimagic total) if all edge-weights (vertex-weights) are pairwise distinct.If a labeling is simultaneously edge-antimagic total and vertex-antimagic total it is called a totally antimagic total labeling. A graph that admits totally antimagic total labeling is called a totally antimagic total graph. In this paper we deal with the problem of finding totally antimagic total labeling of some classes of graphs. We prove that paths, cycles, stars, double-stars and wheels are totally antimagic total. We also show that a union of regular totally antimagic total graphs

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Australasian Journal of Combinatorics

  • ISSN

    1034-4942

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    15

  • Pages from-to

    42-56

  • UT code for WoS article

  • EID of the result in the Scopus database