Magic labelings of regular graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F07%3A00015141" target="_blank" >RIV/61989100:27240/07:00015141 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Magic labelings of regular graphs
Original language description
Let G(V,E) be a graph and ? be a bijection from the set V or E to the set of the first |V|+|E| natural numbers. The weight of a vertex is the sum of its label and the labels of all adjacent edges. We say ? is a vertex magic total (VMT) labeling of G if the weight of each vertex is constant. We say ? is an (s,d)-vertex antimagic total (VAMT) labeling if the vertex weights form an arithmetic progression starting at s with difference d. J. MacDougall conjectured that any regular graph with the exception ofK2 and 2K3 has a VMT labeling. We give constructions of VAMT labelings of any even-regular graphs and VMT labelings of certain regular graphs.
Czech name
Magic labelings of regular graphs
Czech description
Let G(V,E) be a graph and ? be a bijection from the set V or E to the set of the first |V|+|E| natural numbers. The weight of a vertex is the sum of its label and the labels of all adjacent edges. We say ? is a vertex magic total (VMT) labeling of G if the weight of each vertex is constant. We say ? is an (s,d)-vertex antimagic total (VAMT) labeling if the vertex weights form an arithmetic progression starting at s with difference d. J. MacDougall conjectured that any regular graph with the exception ofK2 and 2K3 has a VMT labeling. We give constructions of VAMT labelings of any even-regular graphs and VMT labelings of certain regular graphs.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AKCE International Journal of Graphs and Combinatorics
ISSN
0972-8600
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
3
Country of publishing house
IN - INDIA
Number of pages
16
Pages from-to
261-275
UT code for WoS article
—
EID of the result in the Scopus database
—