Interpolation by rational spline motions with dual quaternions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43916885" target="_blank" >RIV/49777513:23520/12:43916885 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Interpolation by rational spline motions with dual quaternions
Original language description
Interpolation by rational spline motions is an important part of technical practice, e.g. robotics. Rational spline motions are characterized by the property that the trajectories of the points of the moving object are rational spline curves. We will focus on piecewise rational motions with the first order geometric continuity, i.e., G^1 Hermite interpolation. We will briefly introduces a new approach to rational spline motion design which uses dual quaternions. Consequently, we will compare this approach with other methods.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů