Interpolations by Rational Motions Using Dual Quaternions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932253" target="_blank" >RIV/49777513:23520/17:43932253 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Interpolations by Rational Motions Using Dual Quaternions
Original language description
The main aim of this paper is to show an application of dual quater- nions related to a rational spline motion. The interpolation by rational spline motions is an important part of technical practice, e.g., in robotics. Therefore, we will focus on most simple examples of piecewise rational motions with first and second order geometric continuity, in particular, a cubic G2 Hermite interpolation. Consequently, it is shown that the new approach to rational spline motion design based on dual quaternions is an elegant mathematical method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal for Geometry and Graphics
ISSN
1433-8157
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
71-78
UT code for WoS article
000413142200007
EID of the result in the Scopus database
2-s2.0-85021791657