Maximum and minimum principles for nonlinear transport equations on discrete-space domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921947" target="_blank" >RIV/49777513:23520/14:43921947 - isvavai.cz</a>
Result on the web
<a href="http://ejde.math.txstate.edu/Volumes/2014/78/volek.pdf" target="_blank" >http://ejde.math.txstate.edu/Volumes/2014/78/volek.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Maximum and minimum principles for nonlinear transport equations on discrete-space domains
Original language description
We consider nonlinear scalar transport equations on the domain with discrete space and continuous time. As a motivation we derive a conservation law on these domains. In the main part of the paper we prove maximum and minimum principles that are later applied to obtain an a priori bound which is applied in the proof of existence of solution and its uniqueness. Further, we study several consequences of these principles such as boundedness of solutions, sign preservation, uniform stability and comparisontheorem which deals with lower and upper solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
78
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1-13
UT code for WoS article
—
EID of the result in the Scopus database
—