All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the energy of certain recursive structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43928388" target="_blank" >RIV/49777513:23520/15:43928388 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the energy of certain recursive structures

  • Original language description

    Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The multiset of eigenvalues is called the spectrum. The energy of a graph is the sum of the absolute values of its eigenvalues. In this paper, we devise an algorithm which generates theadjacency matrix of WK - recursive structures WK(3, L) and WK(4, L) and use it in the effective computation of spectrum and energy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Mathematics and Combinatorial Computing

  • ISSN

    0835-3026

  • e-ISSN

  • Volume of the periodical

    92

  • Issue of the periodical within the volume

    February 2015

  • Country of publishing house

    CA - CANADA

  • Number of pages

    8

  • Pages from-to

    215-222

  • UT code for WoS article

  • EID of the result in the Scopus database