Wheels are cycle-antimagic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43931163" target="_blank" >RIV/49777513:23520/15:43931163 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1571065315000049" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065315000049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2015.05.003" target="_blank" >10.1016/j.endm.2015.05.003</a>
Alternative languages
Result language
angličtina
Original language name
Wheels are cycle-antimagic
Original language description
A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. An (a, d)-H-antimagic total labeling of a graph G admitting an H-covering is a bijective function from the vertex set V(G) and the edge set E(G) of the graph G onto the set of integers {1, 2, . . . , |V (G)| + |E(G)|} such that for all subgraphs H' isomorphic to H, the sum of labels of all the edges and vertices belonging to H' constitute the arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super cycle-antimagic total labelings of wheel.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
11-18
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84937412405