Rainbow cycles in edge-colored graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43927380" target="_blank" >RIV/49777513:23520/16:43927380 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2015.12.003" target="_blank" >http://dx.doi.org/10.1016/j.disc.2015.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2015.12.003" target="_blank" >10.1016/j.disc.2015.12.003</a>
Alternative languages
Result language
angličtina
Original language name
Rainbow cycles in edge-colored graphs
Original language description
Let G be a graph with an edge coloring. The minimum color degree of G is the largest integer k such that each vertex of G is incident with at least k edges having pairwise distinct colors. A subgraph F of G is rainbow if all edges of F have pairwise distinct colors. In the paper, we give a minimum color degree condition that guarantees the existence of a (i) rainbow 4-cycle in a triangle-free graph, and (ii) of a rainbow cycle of length at least 4 in a graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
339
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
1387-1392
UT code for WoS article
000369467500024
EID of the result in the Scopus database
—