A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929882" target="_blank" >RIV/49777513:23520/16:43929882 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/16:00458817 RIV/67985904:_____/16:00458817 RIV/60076658:12310/16:43890851
Result on the web
<a href="http://dx.doi.org/10.1007/s10492-016-0119-9" target="_blank" >http://dx.doi.org/10.1007/s10492-016-0119-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10492-016-0119-9" target="_blank" >10.1007/s10492-016-0119-9</a>
Alternative languages
Result language
angličtina
Original language name
A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions
Original language description
Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the classical case without unilateral obstacles. The study is based on a variational approach to a non-variational problem which even after transformation to a variational one has an unusual structure for which usual variational methods do not apply.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000369303200001
EID of the result in the Scopus database
2-s2.0-84957589965