Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458505" target="_blank" >RIV/67985840:_____/16:00458505 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/16:43890747
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2016.01.006" target="_blank" >http://dx.doi.org/10.1016/j.na.2016.01.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2016.01.006" target="_blank" >10.1016/j.na.2016.01.006</a>
Alternative languages
Result language
angličtina
Original language name
Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas
Original language description
For a reaction–diffusion system which is subject to Turing’s diffusion-driven instability and which is equipped with unilateral obstacles of various types, the nonexistence of bifurcation of stationary solutions near certain critical parameter values is proved. The result implies assertions about a related mapping degree which in turn implies for “small obstacles the existence of a new branch of bifurcation points (spatial patterns) induced by the obstacle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
135
Issue of the periodical within the volume
April
Country of publishing house
GB - UNITED KINGDOM
Number of pages
36
Pages from-to
158-193
UT code for WoS article
000371885600009
EID of the result in the Scopus database
2-s2.0-84959010677