Asymptotically linear system of three equations near resonance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929898" target="_blank" >RIV/49777513:23520/16:43929898 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0022039616302340" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022039616302340</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2016.08.023" target="_blank" >10.1016/j.jde.2016.08.023</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotically linear system of three equations near resonance
Original language description
This paper deals with the asymptotically linear systemMINUS SIGN ?u1=??1u3+f1(?,x,u1,u2,u3)in ?MINUS SIGN ?u2=??2u2+f2(?,x,u1,u2,u3)in ?MINUS SIGN ?u3=??3u1+f3(?,x,u1,u2,u3)in ?u1=u2=u3=0on PARTIAL DIFFERENTIAL?,} where ?i>0 for i=1,2,3 with ?2NOT EQUAL TO?1?3, ? is a real parameter and ?SUBSET OFRN is a bounded domain with smooth boundary. The linear part of the system has two simple eigenvalues with nonnegative eigenfunctions each with at least one zero component. We provide sufficient conditions which guarantee bifurcation from infinity of positive solutions from both, one or none of the two simple eigenvalues. Under additional assumptions on the nonlinear perturbations, we determine the ?-direction of bifurcation as well. We use bifurcation theory to establish our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
261
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
5900-5922
UT code for WoS article
000384874400025
EID of the result in the Scopus database
2-s2.0-84992128150