Translation surfaces and isotropic nets on rational minimal surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932524" target="_blank" >RIV/49777513:23520/17:43932524 - isvavai.cz</a>
Result on the web
<a href="http://www.springer.com/us/book/9783319678849" target="_blank" >http://www.springer.com/us/book/9783319678849</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-67885-6" target="_blank" >10.1007/978-3-319-67885-6</a>
Alternative languages
Result language
angličtina
Original language name
Translation surfaces and isotropic nets on rational minimal surfaces
Original language description
We will deal with the translation surfaces which are the shapes generated by translating one curve along another one. We focus on the geometry of translation surfaces generated by two algebraic curves in space and study their properties, especially those useful for geometric modelling purposes. It is a classical result that each minimal surface may be obtained as a translation surface generated by an isotropic curve and its complex conjugate. Thus, we can study the minimal surfaces as special instances of translation surfaces. All the results about translation surfaces will be directly applied also to minimal surfaces. Finally, we present a construction of rational isotropic curves with a prescribed tangent field which leads to the description of all rational minimal surfaces. A close relation to surfaces with Pythagorean normals will be also discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
9th International Conference, MMCS 2016, Oslo, Tonsberg, June 23 - June 28, 2016, Revised Selected Papers
ISBN
978-3-319-67885-6
ISSN
—
e-ISSN
neuvedeno
Number of pages
16
Pages from-to
186-201
Publisher name
Springer
Place of publication
Heidelberg
Event location
Tonsberg, Norsko
Event date
Jun 23, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—