All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Triangular PN patches subject to surface-area constraints

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932526" target="_blank" >RIV/49777513:23520/17:43932526 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Triangular PN patches subject to surface-area constraints

  • Original language description

    This paper is devoted to the construction of polynomial surfaces with Pythagorean normals (PN surfaces) interpolating given data subject to prescribed constraints on the surface area of the patch. This is a problem analogous to the interpolation with Pythagorean hodograph (PH) curves satisfying the condition on the arc length. The special structure of PN surfaces allows the surface-area condition to be expressed as algebraic constraints on the surfaces coefficients. We employ these shapes for solving the $G^1$ Hermite interpolation problem by triangular PN patches with prescribed surface area. The presented technique is based on interpolating points on the unit sphere and consequently on solving a system of several linear and one quadratic equations. We show that for generic input data there exist at most two quartic PN patches depending on the particular value of the prescribed surface area.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th International Conference on Mathematical Methods in Science and Engineering

  • ISBN

    978-84-617-8694-7

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    9

  • Pages from-to

    333-341

  • Publisher name

    CMMSE

  • Place of publication

    Costa Ballena, Rota, Cádiz (Spain)

  • Event location

    Costa ballena (Rota), Cádiz

  • Event date

    Jul 4, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article