Eigenvalues and bifurcation for problems with positively homogeneous operators and reaction-diffusion systems with unilateral terms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43950287" target="_blank" >RIV/49777513:23520/18:43950287 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/18:00482022 RIV/68407700:21340/18:00317015
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2017.10.004" target="_blank" >http://dx.doi.org/10.1016/j.na.2017.10.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2017.10.004" target="_blank" >10.1016/j.na.2017.10.004</a>
Alternative languages
Result language
angličtina
Original language name
Eigenvalues and bifurcation for problems with positively homogeneous operators and reaction-diffusion systems with unilateral terms
Original language description
Reaction-diffusion systems satisfying assumptions guaranteeing Turing's instability and supplemented by unilateral terms of type v- and v+ are studied. Existence of critical points and sometimes also bifurcation of stationary spatially non-homogeneous solutions are proved for rates of diffusions for which it is excluded without any unilateral term. The main tool is a general result giving a variational characterization of the largest eigenvalue for positively homogeneous operators in a Hilbert space satisfying a condition related to potentiality, and existence of bifurcation for equations with such operators. The originally non-variational (non-symmetric) system is reduced to a single equation with a positively homogeneous potential operator and the abstract results mentioned are used.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
166
Issue of the periodical within the volume
January
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
154-180
UT code for WoS article
000417018000007
EID of the result in the Scopus database
2-s2.0-85033483370