Bifurcation in skew-symmetric reaction-diffusion systems with unilateral terms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00349879" target="_blank" >RIV/68407700:21340/21:00349879 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2021.125223" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2021.125223" target="_blank" >10.1016/j.jmaa.2021.125223</a>
Alternative languages
Result language
angličtina
Original language name
Bifurcation in skew-symmetric reaction-diffusion systems with unilateral terms
Original language description
The paper deals with skew-symmetric reaction-diffusion systems satisfying assumptions guaranteeing Turing's instability and supplemented by unilateral terms of type v^- and v^+. Existence of critical and bifurcation points is proved for diffusion rates, for which it is excluded without any unilateral term. These results are achieved by rewriting the skew-symmetric system as an abstract equation with positively homogeneous potential operator. General theorems about a variational characterization of the largest eigenvalue for positively homogeneous operators in a Hilbert space and bifurcation in equations with potentials are proved and subsequently applied to the reaction-diffusion systems, yielding the desired conclusions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
501
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
1-29
UT code for WoS article
000653644000003
EID of the result in the Scopus database
2-s2.0-85104092856