Unilateral sources and sinks of an activator in reaction-diffusion systems exhibiting diffusion-driven instability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504264" target="_blank" >RIV/67985840:_____/19:00504264 - isvavai.cz</a>
Alternative codes found
RIV/49777513:23520/19:43954972
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2019.04.001" target="_blank" >http://dx.doi.org/10.1016/j.na.2019.04.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2019.04.001" target="_blank" >10.1016/j.na.2019.04.001</a>
Alternative languages
Result language
angličtina
Original language name
Unilateral sources and sinks of an activator in reaction-diffusion systems exhibiting diffusion-driven instability
Original language description
A reaction–diffusion system exhibiting Turing's diffusion driven instability is considered. The equation for an activator is supplemented by unilateral terms of the type s − (x)u − , s + (x)u + describing sources and sinks active only if the concentration decreases below and increases above, respectively, the value of the basic spatially constant solution which is shifted to zero. We show that the domain of diffusion parameters in which spatially non-homogeneous stationary solutions can bifurcate from that constant solution is smaller than in the classical case without unilateral terms. It is a dual information to previous results stating that analogous terms in the equation for an inhibitor imply the existence of bifurcation points even in diffusion parameters for which bifurcation is excluded without unilateral sources. The case of mixed (Dirichlet–Neumann) boundary conditions as well as that of pure Neumann conditions is described.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
187
Issue of the periodical within the volume
October
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
71-92
UT code for WoS article
000476707200004
EID of the result in the Scopus database
2-s2.0-85064321149