The strong comparison principle in parabolic problems with the p-Laplacian in a domain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955797" target="_blank" >RIV/49777513:23520/19:43955797 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0893965919302794" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893965919302794</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2019.06.035" target="_blank" >10.1016/j.aml.2019.06.035</a>
Alternative languages
Result language
angličtina
Original language name
The strong comparison principle in parabolic problems with the p-Laplacian in a domain
Original language description
We investigate some strong comparison principles for nonnegative solutions to several parabolic problems with the p-Laplace operator in one space dimension. We focus on the special case of comparing a stationary (i.e., time-independent) solution with a time-dependent solution. We take advantage of some special properties of stationary solutions that, in general, might not hold for time-dependent solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
98
Issue of the periodical within the volume
DEC 2019
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
365-373
UT code for WoS article
000483423900052
EID of the result in the Scopus database
2-s2.0-85068441740