Existence and multiplicity results for a class of semilinear elliptic equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958702" target="_blank" >RIV/49777513:23520/20:43958702 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/journal/nonlinear-analysis/vol/200/suppl/C" target="_blank" >https://www.sciencedirect.com/journal/nonlinear-analysis/vol/200/suppl/C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2020.112017" target="_blank" >10.1016/j.na.2020.112017</a>
Alternative languages
Result language
angličtina
Original language name
Existence and multiplicity results for a class of semilinear elliptic equations
Original language description
We study the existence and multiplicity of nonnegative solutions, as well as the behavior of corresponding parameter-dependent branches, to the equation −Δu = (1 − u)um − λun in a bounded domain Ω ⊂ RN endowed with the zero Dirichlet boundary data, where 0 < m ≤ 1 and n > 0. When λ > 0, the obtained solutions can be seen as steady states of the corresponding reaction– diffusion equation describing a model of isothermal autocatalytic chemical reaction with termination. In addition to the main new results, we formulate a few relevant conjectures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
200
Issue of the periodical within the volume
NOV 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000562360900003
EID of the result in the Scopus database
2-s2.0-85086362891