Edge-critical subgraphs of Schrijver graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958757" target="_blank" >RIV/49777513:23520/20:43958757 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jctb.2020.02.004" target="_blank" >https://doi.org/10.1016/j.jctb.2020.02.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2020.02.004" target="_blank" >10.1016/j.jctb.2020.02.004</a>
Alternative languages
Result language
angličtina
Original language name
Edge-critical subgraphs of Schrijver graphs
Original language description
For k≥1 and n≥2k, the Kneser graph KG(n,k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. It was first proved by Lovász that the chromatic number of KG(n,k) is n−2k+2. Schrijver constructed a vertex-critical subgraph SG(n,k) of KG(n,k) with the same chromatic number. For the stronger notion of criticality defined in terms of removing edges, however, no analogous construction is known except in trivial cases. We provide such a construction for k=2 and arbitrary n≥4 by means of a nice explicit combinatorial definition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMBINATORIAL THEORY SERIES B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
September 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
191-196
UT code for WoS article
000543403800009
EID of the result in the Scopus database
2-s2.0-85079597052