All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Isomorphisms of maps on the sphere

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961854" target="_blank" >RIV/49777513:23520/21:43961854 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.ams.org/books/conm/764/" target="_blank" >http://www.ams.org/books/conm/764/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/conm/764/15358" target="_blank" >10.1090/conm/764/15358</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Isomorphisms of maps on the sphere

  • Original language description

    For a class of objects with a well-defined isomorphism relation the isomorphism problem asks to determine the algorithmic complexity of the decision whether two given objects are, or are not, isomorphic. Theorems by Steinitz (1916), Whitney (1933) and Mani (1971) show that the isomorphism problems for convex polyhedra, for 3-connected planar graphs, and for the spherical maps are closely related. In 1974, Hopcroft and Wong investigated the complexity of the graph isomorphism problem for polyhedral graphs. They proved that the problem can be solved in linear time. We describe a modified linear-time algorithm solving the isomorphism problem for spherical maps based on the approach by Hopcroft and Wong. The paper includes a detailed description of the algorithm including proofs. Moreover, our modified algorithm allows to determine (in linear time) the group of orientation-preserving symmetries of a spherical map.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Polytopes and Discrete Geometry

  • ISBN

    978-1-4704-4897-4

  • ISSN

    0271-4132

  • e-ISSN

  • Number of pages

    23

  • Pages from-to

    125-147

  • Publisher name

    American Mathematical Society

  • Place of publication

    Providence

  • Event location

    Boston

  • Event date

    Apr 21, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article