Isomorphisms of maps on the sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961854" target="_blank" >RIV/49777513:23520/21:43961854 - isvavai.cz</a>
Result on the web
<a href="http://www.ams.org/books/conm/764/" target="_blank" >http://www.ams.org/books/conm/764/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/764/15358" target="_blank" >10.1090/conm/764/15358</a>
Alternative languages
Result language
angličtina
Original language name
Isomorphisms of maps on the sphere
Original language description
For a class of objects with a well-defined isomorphism relation the isomorphism problem asks to determine the algorithmic complexity of the decision whether two given objects are, or are not, isomorphic. Theorems by Steinitz (1916), Whitney (1933) and Mani (1971) show that the isomorphism problems for convex polyhedra, for 3-connected planar graphs, and for the spherical maps are closely related. In 1974, Hopcroft and Wong investigated the complexity of the graph isomorphism problem for polyhedral graphs. They proved that the problem can be solved in linear time. We describe a modified linear-time algorithm solving the isomorphism problem for spherical maps based on the approach by Hopcroft and Wong. The paper includes a detailed description of the algorithm including proofs. Moreover, our modified algorithm allows to determine (in linear time) the group of orientation-preserving symmetries of a spherical map.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Polytopes and Discrete Geometry
ISBN
978-1-4704-4897-4
ISSN
0271-4132
e-ISSN
—
Number of pages
23
Pages from-to
125-147
Publisher name
American Mathematical Society
Place of publication
Providence
Event location
Boston
Event date
Apr 21, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—