All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Industrialization of FOPID Controllers: A Survey on Milestones of Fractional-Order Control and Pathways for Future Developments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962066" target="_blank" >RIV/49777513:23520/21:43962066 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9336650" target="_blank" >https://ieeexplore.ieee.org/document/9336650</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3055117" target="_blank" >10.1109/ACCESS.2021.3055117</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Industrialization of FOPID Controllers: A Survey on Milestones of Fractional-Order Control and Pathways for Future Developments

  • Original language description

    The interest in fractional-order (FO) control can be traced back to the late nineteenth century. The growing tendency towards using fractional-order proportional-integral-derivative (FOPID) control has been fueled mainly by the fact that these controllers have additional “tuning knobs” that allow coherent adjustment of the dynamics of control systems. For instance, in certain cases, the capacity for additional frequency response shaping gives rise to the generation of control laws that lead to superior performance of control loops. These fractional-order control laws may allow fulfilling intricate control performance requirements that are otherwise not in the span of conventional integer-order control systems. However, there are underpinning points that are rarely addressed in the literature: (1) What are the particular advantages (in concrete figures) of FOPID controllers versus conventional, integer-order (IO) PID controllers in light of the complexities arising in the implementation of the former? (2) For real-time implementation of FOPID controllers, approximations are used that are indeed equivalent to high-order linear controllers. What, then, is the benefit of using FOPID controllers? Finally, (3) What advantages are to be had from having a near-ideal fractional-order behavior in control practice? In the present paper, we attempt to address these issues by reviewing a large portion of relevant publications in the fast-growing FO control literature, outline the milestones and drawbacks, and present future perspectives for industrialization of fractional-order control. Furthermore, we comment on FOPID controller tuning methods from the perspective of seeking globally optimal tuning parameter sets and how this approach can benefit designers of industrial FOPID control. We also review some CACSD (computer-aided control system design) software toolboxes used for the design and implementation of FOPID controllers. Finally, we draw conclusions and formulate suggestions for future research.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

    21016-21042

  • UT code for WoS article

    000616299500001

  • EID of the result in the Scopus database

    2-s2.0-85100508854