All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tungsten Oxide Based Hydrogen Gas Sensor Prepared by Advanced Magnetron Sputtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962620" target="_blank" >RIV/49777513:23520/21:43962620 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tungsten Oxide Based Hydrogen Gas Sensor Prepared by Advanced Magnetron Sputtering

  • Original language description

    In this study, we demonstrate the advantages of two advanced sputtering techniques for the preparation of a thin-film conductometric gas sensor. We combined tungsten oxide (WO3) thin films with other materials to achieve enhanced sensorial behavior towards hydrogen. Thin films of WO3 were prepared by the DC and HiPIMS technique, which allowed us to tune the phase composition and crystallinity of the oxide by changing the deposition parameters. Then, the second material was added on-top of these films. We used the copper tungstate CuWO4 in a form of nano-islands deposited by reactive rf sputtering and Pd particles formed during conventional dc sputtering. The specimens were tested for the response to a time-varied hydrogen concentration in synthetic air at various temperatures. The sensitivity and response time were evaluated. The performance of individual films is presented as well as the details of the synthesis. Advanced magnetron techniques (such as HiPIMS) allow us to tune the property of the film to improve the sensorial behavior. The method is compatible with the silicon electronics industry, which consists of a few steps that don&apos;t require any wet technique and films can be used in an as-deposited state. Therefore, sensorial nanostructured materials prepared by magnetron sputtering are very suitable for use in miniaturized electronic devices.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů