Point-mass Filter with Functional Decomposition of Transient Density and Two-level Convolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969685" target="_blank" >RIV/49777513:23520/23:43969685 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2405896323008765" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896323008765</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2023.10.509" target="_blank" >10.1016/j.ifacol.2023.10.509</a>
Alternative languages
Result language
angličtina
Original language name
Point-mass Filter with Functional Decomposition of Transient Density and Two-level Convolution
Original language description
The paper deals with Bayesian state estimation using the point-mass filter with a particular focus on the prediction step involving the convolution of two grids of points. To reduce the computational costs of the step, a functional decomposition-based convolution was proposed by Tichavský et al. (2022), which approximates the transient probability density function over an approximation region. This paper addresses the problem of having spacious grids of points due to state uncertainty while the approximation region is kept small to preserve low computational complexity. A two-level convolution is proposed based on splitting the grids into subgrids and processing the convolution in the upper level for the subgrids and in the lower level for their points. An example demonstrates the proposed technique efficiency.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IFAC World Congress 2023
ISBN
978-1-71387-234-4
ISSN
2405-8963
e-ISSN
—
Number of pages
6
Pages from-to
6934-6939
Publisher name
Elsevier B.V.
Place of publication
Japonsko
Event location
Yokohama, Japonsko
Event date
Jul 9, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—