All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Point-mass filter with functional decomposition of transient density and two-level convolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00574015" target="_blank" >RIV/67985556:_____/23:00574015 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ifacol.2023.10.509" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2023.10.509</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2023.10.509" target="_blank" >10.1016/j.ifacol.2023.10.509</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Point-mass filter with functional decomposition of transient density and two-level convolution

  • Original language description

    The paper deals with Bayesian state estimation using the point-mass filter with a particular focus on the prediction step involving the convolution of two grids of points. To reduce the computational costs of the step, a functional decomposition-based convolution was proposed by Tichavský et al. (2022), which approximates the transient probability density function (PDF) over an approximation region. This paper addresses the problem of having spacious grids of points due to state uncertainty while the approximation region is kept small to preserve low computational complexity. A two-level convolution is proposed based on splitting the grids into sub-grids and processing the convolution in the upper level for the sub-grids and in the lower level for their points. A numerical example demonstrates the efficiency of the proposed technique.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFAC-PapersOnLine. Volume 56, Issue 2 - 22nd IFAC World Congress

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    7516-7520

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    Yokohama

  • Event date

    Jul 9, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article