A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972344" target="_blank" >RIV/49777513:23520/24:43972344 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.disc.2024.114154" target="_blank" >https://doi.org/10.1016/j.disc.2024.114154</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2024.114154" target="_blank" >10.1016/j.disc.2024.114154</a>
Alternative languages
Result language
angličtina
Original language name
A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs
Original language description
We introduce a closure technique for Hamilton-connectedness of {K(1,3),Gamma(3)}-free graphs, where Gamma(3) is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.The main application of the closure is given in a subsequent paper showing that every 3-connected {K(1,3),Gamma(3)}-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-09525S" target="_blank" >GA20-09525S: Structural properties of graph classes characterized by forbidden subgraphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
1872-681X
Volume of the periodical
347
Issue of the periodical within the volume
11
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
—
UT code for WoS article
001273757900001
EID of the result in the Scopus database
2-s2.0-85198570713