All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On vectorized matlab implementation of elastoplastic problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43902321" target="_blank" >RIV/60076658:12310/20:43902321 - isvavai.cz</a>

  • Alternative codes found

    RIV/68145535:_____/20:00536400 RIV/67985556:_____/20:00536400 RIV/61989100:27120/20:10246477 RIV/61989100:27240/20:10246477 RIV/61989100:27730/20:10246477

  • Result on the web

    <a href="https://drive.google.com/file/d/1G75mVsktNawkxQUjoWOYO_cmnpdsaz_E/view" target="_blank" >https://drive.google.com/file/d/1G75mVsktNawkxQUjoWOYO_cmnpdsaz_E/view</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0026561" target="_blank" >10.1063/5.0026561</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On vectorized matlab implementation of elastoplastic problems

  • Original language description

    We propose an effective and flexible way to assemble tangent stiffness matrices in MATLAB. Our technique is applied to elastoplastic problems formulated in terms of displacements and discretized by the finite element method. The tangent stiffness matrix is repeatedly assembled in each time step and in each iteration of the semismooth Newton method. We consider von Mises and Drucker-Prager yield criteria, linear and quadratic finite elements in two and three space dimensions. Our codes are vectorized and available for download. Comparisons with other available MATLAB codes show, that our technique is also efficient for purely elastic problems. In elastoplasticity, the assembly times are linearly proportional to the number of integration points. © 2020 American Institute of Physics Inc.. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

    978-0-7354-4025-8

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    American Institute of Physics Inc.

  • Place of publication

    Německo

  • Event location

    Řecko

  • Event date

    Sep 23, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article