Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00504439" target="_blank" >RIV/68145535:_____/19:00504439 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/19:00504439 RIV/60076658:12310/19:43899348 RIV/61989100:27120/19:10241990 RIV/61989100:27730/19:10241990
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0096300319301584" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0096300319301584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2019.02.054" target="_blank" >10.1016/j.amc.2019.02.054</a>
Alternative languages
Result language
angličtina
Original language name
Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems
Original language description
Fully vectorized MATLAB implementation of various elastoplastic problems formulated in terms of displacement is considered. It is based on implicit time discretization, the finite element method and the semismooth Newton method. Each Newton iteration represents a linear system of equations with a tangent stiffness matrix. We propose a decomposition of this matrix consisting of three large sparse matrices representing the elastic stiffness operator, the strain-displacement operator, and the derivative of the stress-strain operator. The first two matrices are fixed and assembled once and only the third matrix needs to be updated in each iteration. Assembly times of the tangent stiffness matrices are linearly proportional to the number of plastic integration points in practical computations and never exceed the assembly time of the elastic stiffness matrix. MATLAB codes are available for download and provide complete finite element implementations in both 2D and 3D assuming von Mises and Drucker–Prager yield criteria. One can also choose several finite elements and numerical quadrature rules.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
355
Issue of the periodical within the volume
August 2019
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
595-614
UT code for WoS article
000464930500044
EID of the result in the Scopus database
2-s2.0-85063371842