Comprehensive N-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F20%3A00538602" target="_blank" >RIV/60077344:_____/20:00538602 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14740/20:00114734 RIV/00027162:_____/20:N0000107
Result on the web
<a href="https://www.nature.com/articles/s41598-020-70082-2" target="_blank" >https://www.nature.com/articles/s41598-020-70082-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-020-70082-2" target="_blank" >10.1038/s41598-020-70082-2</a>
Alternative languages
Result language
angličtina
Original language name
Comprehensive N-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells
Original language description
Tick-borne encephalitis virus (TBEV) is the causative agent of severe human neuroinfections that most commonly occur after a tick bite. N-Glycosylation of the TBEV envelope (E) glycoprotein is critical for virus egress in mammalian cells, but not in tick cells. In addition, glycans have been reported to mask specific antigenic sites from recognition by neutralizing antibodies. In this regard, the main purpose of our study was to investigate the profile of N-glycans linked to the E protein of TBEV when grown in human neuronal cells and compare it to the profile of virus grown in tick cells. Mass spectrometric analysis revealed significant differences in these profiles. High-mannose glycan with five mannose residues (Man(5)GlcNAc(2)), a complex biantennary galactosylated structure with core fucose (Gal(2)GlcNAc(2)Man(3)GlcNAc(2)Fuc), and a group of hybrid glycans with the composition Gal(0-1)GlcNAc(1)Man(3-5)GlcNAc(2)Fuc(0-1) were confirmed as the main asparagine-linked oligosaccharides on the surface of TBEV derived from human neuronal cells. The observed pattern was supported by examination of the glycopeptides, providing additional information about the glycosylation site in the E protein. In contrast, the profile of TBEV grown in tick cells showed that paucimannose (Man(3-4)GlcNAc(2)Fuc(0-1)) and high-mannose structures with five and six mannoses (Man(5-6)GlcNAc(2)) were major glycans on the viral surface. The reported results complement existing crystallography and cryoelectron tomography data on the E protein structure and could be instrumental for designing carbohydrate-binding antiviral agents active against TBEV.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
13204
UT code for WoS article
000573234700005
EID of the result in the Scopus database
2-s2.0-85089155594