Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00569715" target="_blank" >RIV/60077344:_____/23:00569715 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/23:10458024
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0021925822011693?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021925822011693?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jbc.2022.102726" target="_blank" >10.1016/j.jbc.2022.102726</a>
Alternative languages
Result language
angličtina
Original language name
Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared
Original language description
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two stra-tegies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity bio-tinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the popula-tion of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclu-sively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reli-ance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Biological Chemistry
ISSN
0021-9258
e-ISSN
1083-351X
Volume of the periodical
299
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
102726
UT code for WoS article
000923287700005
EID of the result in the Scopus database
2-s2.0-85146228423