The number of fillings a 2×2×n prism with 1×1×2 prisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00560477" target="_blank" >RIV/60162694:G43__/24:00560477 - isvavai.cz</a>
Result on the web
<a href="https://wseas.com/journals/articles.php?id=8319" target="_blank" >https://wseas.com/journals/articles.php?id=8319</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37394/232021.2023.3.12" target="_blank" >10.37394/232021.2023.3.12</a>
Alternative languages
Result language
angličtina
Original language name
The number of fillings a 2×2×n prism with 1×1×2 prisms
Original language description
This paper is inspired by very interesting YouTube video of Burkard Polster, professor of mathematics at Monash University in Melbourne, Australia, which, among other things, concerned the number of ways to fill a part of the plane with dominoes, i.e. 1 × 2 rectangles. First we deal with the numbers of fillings the 2 × 2 × prism with elementary 1 × 1 × 2 prisms for = 1, 2, 3, 4, 5. Special symbolism and figures showing the filling of the prism are used as well as the concept of matching from graph theory and the corresponding graph diagrams. Then we generalize these specific considerations and derive a general recurrence formula for any ≥ 3, which expresses the number of fillings of the 2 × 2 × prism with 1 × 1 × 2 elementary prisms, which in a way can be considered as spatial domino cubes, if we do not consider their marking with pairs of numbers from 0 to 6.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EQUATIONS
ISSN
2944-9146
e-ISSN
2732-9976
Volume of the periodical
—
Issue of the periodical within the volume
3
Country of publishing house
GR - GREECE
Number of pages
11
Pages from-to
104-114
UT code for WoS article
—
EID of the result in the Scopus database
—