On bipartite graphs of diameter 3 and defect 2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00503071" target="_blank" >RIV/49777513:23520/09:00503071 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On bipartite graphs of diameter 3 and defect 2
Original language description
We consider bipartite graphs of degree d at least 2, diameter 3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (d,3,-2) -graphs. We prove the uniqueness of the known bipartite (3,3,-2) -graph and bipartite (4,3,-2)-graph. We also prove several necessary conditions for the existence of bipartite (d,3,-2) -graphs. The most general of these conditions is that either d or d-2 must be a perfect square. Furthermore, in some cases for which the conditionholds, in particular, when d=6 and d=9, we prove the non-existence of the corresponding bipartite (d,3,-2)-graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—