All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On bipartite graphs of diameter 3 and defect 2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00503071" target="_blank" >RIV/49777513:23520/09:00503071 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On bipartite graphs of diameter 3 and defect 2

  • Original language description

    We consider bipartite graphs of degree d at least 2, diameter 3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (d,3,-2) -graphs. We prove the uniqueness of the known bipartite (3,3,-2) -graph and bipartite (4,3,-2)-graph. We also prove several necessary conditions for the existence of bipartite (d,3,-2) -graphs. The most general of these conditions is that either d or d-2 must be a perfect square. Furthermore, in some cases for which the conditionholds, in particular, when d=6 and d=9, we prove the non-existence of the corresponding bipartite (d,3,-2)-graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database