On large bipartite graphs of diameter 3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919788" target="_blank" >RIV/49777513:23520/13:43919788 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2012.11.013" target="_blank" >http://dx.doi.org/10.1016/j.disc.2012.11.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2012.11.013" target="_blank" >10.1016/j.disc.2012.11.013</a>
Alternative languages
Result language
angličtina
Original language name
On large bipartite graphs of diameter 3
Original language description
We consider the bipartite version of the degree/diameter problem. This paper is a follow-up of our earlier paper (Feria-Purón and Pineda-Villavicencio). Here we first present some structural properties of bipartite (d, 3,-4)-graphs, and later prove thatthere are no bipartite (7, 3,-4)-graphs. The approach here presented also provides a proof of the uniqueness of the known bipartite (5, 3,-4)-graph, and the non-existence of bipartite (6, 3,-4)-graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
313
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
381-390
UT code for WoS article
000315014200008
EID of the result in the Scopus database
—