Attenuation of radiation-induced lung injury by hyaluronic acid nanoparticles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG44__%2F20%3A00555896" target="_blank" >RIV/60162694:G44__/20:00555896 - isvavai.cz</a>
Alternative codes found
RIV/00216275:25310/20:39916598
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fphar.2020.01199/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fphar.2020.01199/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphar.2020.01199" target="_blank" >10.3389/fphar.2020.01199</a>
Alternative languages
Result language
angličtina
Original language name
Attenuation of radiation-induced lung injury by hyaluronic acid nanoparticles
Original language description
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. Forin vivoexperiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30104 - Pharmacology and pharmacy
Result continuities
Project
<a href="/en/project/EF17_048%2F0007421" target="_blank" >EF17_048/0007421: Strengthening interdisciplinary cooperation in research of nanomaterials and their effects on living organisms (NANOBIO)</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Pharmacology
ISSN
1663-9812
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
Aug
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
1199
UT code for WoS article
000565344500001
EID of the result in the Scopus database
2-s2.0-85089890270