An Easily Computable Invariant of Trilinear Alternating Forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F11%3A50500" target="_blank" >RIV/60460709:41310/11:50500 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An Easily Computable Invariant of Trilinear Alternating Forms
Original language description
We show that number of system of k paralel triples in the definition of a trilinear alternating form with respect to a basis B is modulo 2 an invariant of the form in the case the underlying vector space of dimension 3k is over the two-element field. Values of this invariant can thus be computed only from the values on the basis vector. If its value is equal to 1, the form is nondegenerate (regular). Moreover, it is possible to extend this invariant to the cased dim V=3k+1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Carolinae: Mathematica et Physica
ISSN
0001-7140
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
9-15
UT code for WoS article
—
EID of the result in the Scopus database
—