Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918003" target="_blank" >RIV/60461373:22310/19:43918003 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlepdf/2019/nr/c9nr02211b" target="_blank" >https://pubs.rsc.org/en/content/articlepdf/2019/nr/c9nr02211b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9nr02211b" target="_blank" >10.1039/c9nr02211b</a>
Alternative languages
Result language
angličtina
Original language name
Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives
Original language description
It has been more than a decade since nano/micromachines (NMMs) have received the particular attention of scientists in different research fields. They are able to convert chemical energy into mechanical motion in their surrounding environment. Herein, a powerful, efficient and fast strategy of using nanosized reduced graphene oxide flake (n-rGO)-based self-propelled tubular micromachines for the removal of nitroaromatic compounds (NACs) is described. This method relies on the integration of the rGO as a well-known adsorbent of aromatic compounds with chemically powered engines for the removal of explosive compounds such as 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol (TNP) and 2,4-dinitrotoluene (DNT). Nanographene oxide reduced electrochemically inside the pores of the polycarbonate membrane to form an outer layer (n-rGO, adsorbent layer) of the micromachines. Subsequent electrodeposition of nickel (Ni, magnetic layer) and platinum (Pt, catalytic layer) resulted in the formation of n-rGO/Ni/Pt micromachines. Notably, the bubble-propelled micromachines were able to remove nitroaromatic compounds with high efficiency (approximate to 90-92%) compared to the efficiency of magnetic-guided (22-42%) and static (2.5-7%) micromachines. Most importantly, the micromachines were regenerated and reused several times. The regeneration is based on an electrochemical method in which electron injection into the machine causes the expulsion of contaminants from the outer layer of the micromachines within a few seconds. The integration of the powerful self-propulsion, high adsorbent capacity of rGO and the introduced ultrafast regeneration procedure are beneficial for the realization of an active platform for water remediation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA16-05167S" target="_blank" >GA16-05167S: Ion beam modifications of graphene based structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanoscale
ISSN
2040-3364
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
18
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
8825-8834
UT code for WoS article
000469245300016
EID of the result in the Scopus database
2-s2.0-85065578496