All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two-Dimensional Van Der Waals Thin Film and Device

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927409" target="_blank" >RIV/60461373:22310/23:43927409 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/smll.202303638" target="_blank" >https://doi.org/10.1002/smll.202303638</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smll.202303638" target="_blank" >10.1002/smll.202303638</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two-Dimensional Van Der Waals Thin Film and Device

  • Original language description

    In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/LL2101" target="_blank" >LL2101: Next Generation of 2D Monoelemental Materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Small

  • ISSN

    1613-6810

  • e-ISSN

    1613-6829

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    SEP 2023

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    001067063000001

  • EID of the result in the Scopus database

    2-s2.0-85171563658